GLOBAL DIMENSION OF TILED ORDERS OVER A DISCRETE VALUATION RING

BY

VASANTI A. JATEGAONKAR(1)

ABSTRACT. Let R be a discrete valuation ring with maximal ideal m and the quotient field K. Let $A = (m^{\lambda_{ij}}) \subseteq M_n(K)$ be a tiled R-order, where $\lambda_{ij} \in \mathbb{Z}$ and $\lambda_{ii} = 0$ for $1 \le i \le n$. The following results are proved. Theorem 1. There are, up to conjugation, only finitely many tiled R-orders in $M_n(K)$ of finite global dimension. Theorem 2. Tiled R-orders in $M_n(K)$ of finite global dimension satisfy DCC. Theorem 3. Let $A \subseteq M_n(R)$ and let Γ be obtained from A by replacing the entries above the main diagonal by arbitrary entries from R. If Γ is a ring and if R dim R conditions, then R dim R conditions a tiled R-order in R for R dim R conditions of R dim R conjugate to a triangular tiled R-order of finite global dimension or is conjugate to the tiled R-order R conditions of R dimensions.

Introduction. This paper is a continuation of the author's previous paper, Global dimension of tiled orders over commutative noetherian domains [7]. Throughout this paper R will denote a discrete valuation ring (DVR) with maximal ideal m, generated by t, and the quotient field K. In this paper we will use notations and terminologies of [7]. Let Λ be a tiled R-order in $M_n(K)$, i.e., an R-order in $M_n(K)$ containing n orthogonal idempotents. If a tiled R-order Λ in $M_n(K)$ contains the usual system e_{ii} , $1 \le i \le n$, of n orthogonal idempotents, then $\Lambda = (m^{\lambda_{ij}}) \subseteq M_n(K)$, where $\lambda_{ii} = 0$ and $\lambda_{ij} \in Z$ for all i,j [7]. Furthermore, by conjugating if necessary, we may assume that $\lambda_{ij} \ge 0$ for all i,j (cf. Lemma 1.1). One of the main results in this paper shows that if $\Lambda = (m^{\lambda_{ij}}) \subseteq M_n(R)$ is a tiled R-order of finite global dimension, then $\lambda_{ij} \le n-1$ for all i,j; hence it follows that there are only finitely many tiled R-orders in $M_n(R)$ of finite global dimension. Using this we show that if S_1, S_2, \ldots, S_k is a finite family of

Presented to the Society, January 12, 1972; received by the editors June 15, 1973. AMS (MOS) subject classifications (1970). Primary 16A60.

Key words and phrases. Orders, tiled orders, discrete valuation ring, Dedekind domain, global dimension.

⁽¹⁾ This paper contains a part of author's Ph.D. thesis written at Cornell University under the direction of Professor Alex Rosenberg, whom the author wishes to thank for his help and encouragement.

Copyright © 1974, American Mathematical Society

orthogonal idempotents in $M_n(K)$, and if δ is the collection of all tiled R-orders in $M_n(K)$ of finite global dimension containing some S_i , then δ satisfies the descending chain condition (DCC). This shows that the conjecture of R. B. Tarsey [12] is true for a wide class of R-orders in $M_n(K)$. The complete classification given in Theorem 4.2 shows that if Λ is a tiled R-order in $M_4(K)$, and if gl dim $\Lambda < \infty$, then gl dim $\Lambda \leq 3$. Since there is a tiled R-order in $M_4(K)$ of global dimension 3 [5], [12], this upper bound is best possible. An intrinsic characterization of a reduced triangular tiled R-order $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$, obtained in Theorem 3.3, is of independent interest. We recall that a tiled R-order $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ is reduced if $\lambda_{ij} > 0$ or $\lambda_{ji} > 0$ whenever $i \neq j$, and that Λ is a triangular tiled R-order if $\lambda_{ij} = 0$ whenever $i \leq j$. Lastly, let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(K)$ be a tiled R-order. Since Λ is a ring, we have

- 0.1. $\lambda_{ij} \leq \lambda_{ik} + \lambda_{kj}$ for $1 \leq i$, j, $k \leq n$.
- 0.2. If Λ is a triangular tiled R-order, then $\lambda_{ij} \geq \lambda_{ik}$ and $\lambda_{ki} \geq \lambda_{ji}$ whenever j < k.

We will have several occasions of using 0.1 and 0.2, and sometimes we use them without giving a reference.

The main results of this paper were announced in [6].

- 1. Preliminaries. In this section we prove some preliminary results which will be needed in the sequel.
- Lemma 1.1. Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(K)$ be a tiled R-order. Then there exists a tiled R-order $\Gamma = (\mathfrak{m}^{\gamma_{ij}}) \subseteq M_n(R)$ such that $\gamma_{1j} = 0$ for all j and $\Gamma = y\Lambda y^{-1}$ for some unit y in $M_n(K)$. Furthermore, $ye_{ii}y^{-1} = e_{ii}$ for $1 \le i \le n$.
- **Proof.** Let y be the diagonal matrix in $M_n(K)$ with $t^{\lambda_1 i}$ as the (i, i)th entry, where m = tR. Set $\Gamma = y \Lambda y^{-1}$. Then a direct computation shows that Γ and y satisfy the conditions of the lemma.
- Definition 1.2. If Λ and Γ are tiled R-orders in $M_n(K)$, then Λ and Γ are permutationally conjugate if one is obtained from the other by permuting rows and columns, equivalently, $\Lambda = \epsilon \Gamma \epsilon^{-1}$ for some permutation matrix ϵ in $M_n(K)$.
- Lemma 1.3. Let $\Lambda=(\mathfrak{m}^{\lambda_{ij}})\subseteq M_n(R)$ be a reduced tiled R-order, where $\lambda_{1j}=0$ for all j. Then Λ is permutationally conjugate to a tiled R-order $\Gamma=(\mathfrak{m}^{\gamma_{ij}})\subseteq M_n(R)$, where $\gamma_{1j}=0$ for all j, and $\gamma_{ij}>0$ whenever i>j.
- **Proof.** We use induction on n. If n=2, then the assertion is trivial. Let $n\geq 3$. Since $\lambda_{1j}=0$ for all j and since Λ is reduced, therefore by Lemma 1.7 of [7] we have an integer l>1 such that $\lambda_{li}>0$ whenever $i\neq l$. By interchanging the lth and the nth rows and columns, we may further assume that l=n. Thus,

 $\lambda_{ni}>0$ whenever $i\neq n$, and $\lambda_{1j}=0$ for all j. Clearly, $e\Lambda e$ is a reduced tiled R-order contained in $M_{n-1}(R)$, where $e=\sum_{i=1}^{n-1}e_{ii}$. Hence by the induction hypothesis, $e\Lambda e$ is permutationally conjugate to a tiled R-order $\Gamma'=(m^{\gamma'}ij)\subseteq M_{n-1}(R)$, where $\gamma'_{1j}=0$, $\gamma'_{ij}>0$ whenever i>j. Thus $\Gamma'=\gamma'(e\Lambda e)\gamma'^{-1}$ for some permutation matrix $\gamma'=(\gamma'_{ij})$ in $M_{n-1}(K)$. Let $\gamma=(\gamma_{ij})$ in $M_{n}(K)$ with $\gamma_{nn}=1$, $\gamma_{nj}=\gamma_{jn}=0$ for $j\neq n$, and $\gamma_{ij}=\gamma'_{ij}$ otherwise. Then $\Gamma=\gamma\Lambda\gamma^{-1}$ fulfills the requirements of the lemma.

Let $\Lambda=(\mathfrak{m}^{\lambda ij})\subseteq M_n(R)$ be a tiled R-order. Let x be the diagonal matrix in $M_n(K)$ with t on the diagonal. Let $\overline{\Lambda}=\Lambda/\Lambda x=\Lambda/\Lambda m$. Then $\overline{\Lambda}\cong \Lambda\otimes_R R/m$ as R/m-algebras and thus $\overline{\Lambda}$ is a finite dimensional R/m-algebra. Obviously $\overline{\Lambda}$ is isomorphic to the R/m-algebra $(\mathfrak{m}^{\lambda ij}/\mathfrak{m}^{\lambda ij+1})$, where the multiplication is induced from that in Λ , i.e., if $(a_{ij}+\mathfrak{m}^{\lambda ij+1})$ and $(b_{ij}+\mathfrak{m}^{\lambda ij+1})$ are in $(\mathfrak{m}^{\lambda ij}/\mathfrak{m}^{\lambda ij+1})$, then $(a_{ij}+\mathfrak{m}^{\lambda ij+1})(b_{ij}+\mathfrak{m}^{\lambda ij+1})=(\Sigma_{k=1}^n a_{ik}b_{kj}+\mathfrak{m}^{\lambda ij+1})$. From now on we will always identify the two R/m-algebras $\overline{\Lambda}$ and $(\mathfrak{m}^{\lambda ij}/\mathfrak{m}^{\lambda ij+1})$. Let $\overline{e}_{ii}=e_{ii}+\Lambda m$, $1\leq i\leq n$. Then \overline{e}_{ii} are orthogonal indecomposable idempotents in $\overline{\Lambda}$ and $\Sigma_{i=1}^n \overline{e}_{ii}=1$. Furthermore, $\overline{P}_i=\overline{e}_{ii}\overline{\Lambda}$, $1\leq i\leq n$, are, up to isomorphism, the only principal right projectives of $\overline{\Lambda}$. Since $\mathfrak{m}^\alpha/\mathfrak{m}^{\alpha+1}\cong R/\mathfrak{m}$ for every nonnegative integer α , $[\overline{P}_i:R/\mathfrak{m}]=n$. Also, if Λ is reduced, then by Lemma 1.3 of [7], $J(\overline{\Lambda})$ is obtained from $\overline{\Lambda}$ by replacing the diagonal entries R/\mathfrak{m} by zero. We now show that if M is a finitely generated right $\overline{\Lambda}$ -module with $[M:R/\mathfrak{m}]\not\equiv 0 \bmod n$, then $\mathrm{hd}_{\Lambda} M=\infty$.

Proposition 1.4. Let E be a finite dimensional algebra over a field F. Assume that for every indecomposable idempotent e in E, $[eE:F] \equiv 0 \mod l$, where l is independent of e. Then, for any finitely generated right E-module M with $[M:F] \not\equiv 0 \mod l$, we have $\operatorname{hd}_E M = \infty$.

Proof. Since E is a finite dimensional algebra over the field F, the algebra E is artinian. Hence, by Theorem 56.6 of [3, p. 382], if P is a finitely generated projective right E-module, then $P \cong \bigoplus_{i \in I} e_i E$, where $|I| < \infty$ and the e_i are indecomposable idempotents in E. By the hypothesis $[e_i E: F] \equiv 0 \mod l$; therefore $[P:F] \equiv 0 \mod l$ for any finitely generated projective right E-module. Now assume that $\mathrm{hd}_E M = \beta < \infty$. Then we have an exact sequence.

$$0 \to X_{\beta} \xrightarrow{\delta_{\beta}} X_{\beta-1} \xrightarrow{\delta_{\beta-1}} \cdots \to X_1 \xrightarrow{\delta_1} X_0 \xrightarrow{\delta_0} M \to 0$$

where X_i are finitely generated projective right E-modules. By Corollary 2 of [2, p. 151], we have $[M:F] = \sum_{i=0}^{\beta} (-1)^i [X_i:F] \equiv 0 \mod l$. But this contradicts the hypothesis that $[M:F] \not\equiv 0 \mod l$. Thus $\mathrm{hd}_E M = \infty$.

Corollary 1.5. Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ be a tiled R-order. Let $\overline{\Lambda} = \Lambda/\Lambda \mathfrak{m}$. If M is a finitely generated right $\overline{\Lambda}$ -module with $[M:R/\mathfrak{m}] \not\equiv 0 \mod n$, then $\operatorname{hd}_{\overline{\Lambda}} M = \infty$.

Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ be a tiled R-order. Let $A = (R, R, \dots, R)$ be a free left R-module of rank n. Then A is a right $M_n(R)$ -module naturally. This module multiplication induces a $(R - \Lambda)$ bimodule structure on A. Further, if M is a nonzero Λ -submodule of A, then, since R is a principal ideal domain, M is also a free R-module of rank n (cf. remarks at the end of $\S 1$ of [7]).

Corollary 1.6. Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ be a tiled R-order. Let $\overline{\Lambda} = \Lambda/\Lambda \mathfrak{m} = \Lambda/\Lambda \mathfrak{m}$. Let A be a free left R-module of rank n treated as a right Λ -module naturally. Let M be a nonzero Λ -submodule of A. If $\overline{M} = M/M x$ and if $\overline{M}_{\overline{\Lambda}} = B_{\overline{\Lambda}} \oplus C_{\overline{\Lambda}}$ is a nontrivial decomposition of \overline{M} as a right $\overline{\Lambda}$ -module, then $\operatorname{hd}_{\overline{\Lambda}} \overline{M} = \infty$ and $\operatorname{hd}_{\Lambda} M = \infty$.

Proof. Clearly $\operatorname{hd}_{\overline{A}} \overline{M} = \infty$, by Corollary 1.5. Hence $\operatorname{hd}_{\overline{A}} M = \infty$, by Theorem 9 of [8, p. 178].

Lemma 1.7. Let $\Lambda = (\mathfrak{m}^{\lambda ij}) \subseteq M_n(R)$ be a tiled R-order. Let $\overline{\Lambda} = \Lambda/\Lambda \mathfrak{m}$. Let $A = (R, R, \dots, R)$ be a free left R-module of rank n. Treat A as a right Λ -module naturally. If $B = (\mathfrak{m}^{\alpha 1}, \mathfrak{m}^{\alpha 2}, \dots, \mathfrak{m}^{\alpha n}) \subseteq A$, where $0 \le \alpha$, are integers, then

- (1) B is a Λ -submodule of A if and only if $\lambda_{ij} \geq \alpha_i \alpha_i$ for all i, j.
- (2) If B is a Λ -submodule of A, then

$$\overline{B} = B/Bm = (m^{\alpha_1}/m^{\alpha_1+1}, \dots, m^{\alpha_s}/m^{\alpha_s+1}, 0, \dots, 0)$$

$$\oplus (0, \dots, 0, m^{\alpha_{s+1}}/m^{\alpha_{s+1}+1}, \dots, m^{\alpha_n}/m^{\alpha_n+1})$$

as right $\overline{\Lambda}$ -modules if and only if $\lambda_{ij} \geq \alpha_j - \alpha_i$ for all i, j; $\lambda_{ij} > \alpha_j - \alpha_i$ for $1 \leq i \leq s < j \leq n$; and $\lambda_{ij} > \alpha_j - \alpha_i$ for $1 \leq j \leq s < i \leq n$. Further, if these conditions hold, then $\operatorname{hd}_{\Lambda} B = \infty$.

(3) If B is a Λ-submodule of A, then

$$\overline{B} = B/Bm = (0, \dots, 0, m^{\alpha_s/m^{\alpha_s+1}}, 0, \dots, 0)$$

$$\bigoplus (m^{\alpha_1/m^{\alpha_1+1}}, \dots, m^{\alpha_{s-1}/m^{\alpha_{s-1}+1}}, 0, m^{\alpha_{s+1}/m^{\alpha_{s+1}+1}}, \dots, m^{\alpha_n/m^{\alpha_n+1}})$$

as right $\overline{\Lambda}$ -modules if and only if $\lambda_{ij} \geq \alpha_j - \alpha_i$ for all i, j, $\lambda_{sj} > \alpha_j - \alpha_s$ and $\lambda_{js} > \alpha_s - \alpha_j$ whenever $j \neq s$. Further, if these conditions hold, then $\operatorname{hd}_{\overline{\Lambda}} B = \infty$.

Proof. The proof is a straightforward computation and we leave it to the reader. That $\operatorname{hd}_A B = \infty$ in (2) and (3) follows from Corollary 1.6.

2. Tiled orders in $M_n(K)$. In this section we show that, up to conjugation, there are only finitely many tiled R-orders in $M_n(K)$ of finite global dimension (Theorem 2.3). We also show that certain large classes of tiled R-orders in $M_n(K)$ of finite global dimension satisfy DCC (Theorem 2.5).

Lemma 2.1. If $\Lambda = (\mathfrak{m}^{\lambda} ij) \subseteq M_n(R)$ is a tiled R-order with gldim $\Lambda < \infty$, then for every integer k, $1 \le k \le n-1$, there exist integers $i \ge k+1$ and $j \le k$ such that $\lambda_{ij} \le 1$.

Proof. Fix $k \geq 1$. Suppose that $\lambda_{ij} \geq 2$ whenever $i \geq k+1$ and $j \leq k$. Set $\alpha_i = 1$ for $1 \leq i \leq k$ and $\alpha_i = 0$ for $k+1 \leq i \leq n$. Then it is easy to check that the conditions of Lemma 1.7 (1) and (2) for the right Λ -module B are satisfied with s = k; and therefore $\operatorname{hd}_{\Lambda} B = \infty$. This is impossible as gl dim $\Lambda < \infty$. Thus for some integers $i \geq k+1$ and $j \leq k$ we must have $\lambda_{ij} \leq 1$.

Lemma 2.2. Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ be a tiled order with gldim $\Lambda < \infty$. Assume that $\lambda_{i,1}$ is an increasing function of i. Then,

- (1) $0 \le \lambda_{i+1,1} \lambda_{i,1} \le 1$ for $1 \le i \le n-1$,
- (2) $\lambda_{i,1} \leq i-1$ for $1 \leq i \leq n$,
- (3) if $\lambda_{l1} < l-1$ for some l, then $\lambda_{i1} < i-1$ whenever $i \ge l$.

Proof. Fix an integer k between 1 and n-1. By Lemma 2.1 we have integer integers $s \ge k+1$ and $j \le k$ such that $\lambda_{sj} \le 1$. Hence by 0.1 and the monotonicity of λ_{i1} we have

$$\lambda_{k1} \leq \lambda_{k+1,1} \leq \lambda_{s1} \leq \lambda_{sj} + \lambda_{j1} \leq 1 + \lambda_{k1}$$

Thus $\lambda_{k\,1} \leq \lambda_{k\,+\,1,\,1} \leq 1 + \lambda_{k\,1}$, which proves (1). For (2) we use an induction on i. Since $\lambda_{1\,1} = 0$, the statement is true for i = 1. Assume that $\lambda_{i\,1} \leq i - 1$. Then by using (1) of this lemma we have $\lambda_{i\,+\,1,\,1} \leq 1 + \lambda_{i\,1} \leq i$. This completes the induction and proves (2) The proof of (3) is similar.

In the next theorem we show that if we consider the class of all tiled R-orders of finite global dimension in $M_n(K)$ containing n orthogonal idempotents, then up to conjugation this class is finite.

Theorem 2.3. Let R be a DVR with maximal ideal m and quotient field K. Then:

- (1) If $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ is a tiled R-order with gl dim $\Lambda < \infty$, then $\lambda_{ij} \le n-1$ for $1 \le i$, $j \le n-1$.
- (2) There are only finitely many tiled R-orders in $M_n(R)$ of finite global dimension containing a fixed set of n orthogonal idempotents.
- (3) There are, up to conjugation, only finitely many tiled R-orders in $M_n(K)$ of finite global dimension.

Proof. First we note that to prove (1) it is enough to show that $\lambda_{i1} \leq n-1$ for all i, since by interchanging the 1st and the jth rows and columns we can always assume that j=1. Furthermore, by permuting rows and columns of Λ through 2 to n we may as well assume that λ_{i1} is an increasing function of i. But then by Lemma 2.2(2) we have $\lambda_{i1} \leq i-1 \leq n-1$ for all i. Thus $\lambda_{ij} \leq n-1$ for $1 \leq i$, $j \leq n$.

We now prove (2). Let f_i , $1 \le i \le n$, be a fixed set of n orthogonal idempotents in $M_n(R)$. $M_n(R)$ contains e_{ii} , $1 \le i \le n$, and f_i and e_{ii} are local idempotents with $\sum_{i=1}^n f_i = 1 = \sum_{i=1}^n e_{ii}$; therefore by Proposition 3 of [9, p. 77] we have a unit u in $M_n(R)$ and a permutation π on the numbers 1 to n such that $e_{ii} = uf_{\pi(i)}u^{-1}$ for $1 \le i \le n$. Thus, if Λ is a tiled R-order in $M_n(R)$ containing f_i , $1 \le i \le n$, then $u\Lambda u^{-1}$ is a tiled R-order in $M_n(R)$ containing e_{ii} , $1 \le i \le n$. Hence to complete the proof we must show that there are only finitely many tiled R-orders in $M_n(R)$ of finite global dimension containing e_{ii} , $1 \le i \le n$. But this is obvious in view of (1).

To prove (3), let Λ be an R-order in $M_n(K)$ containing n orthogonal idempotents. Then Λ is conjugate to a tiled R-order Γ in $M_n(K)$ containing e_{ii} , $1 \le i \le n$, which in turn, by Lemma 1.1, is conjugate to a tiled R-order $\Delta = (\mathfrak{m}^{\delta ij}) \subseteq M_n(R)$. Now the assertion follows trivially from (1) and (2).

This complete the proof of the theorem.

Proposition 2.4. Let f_1, f_2, \dots, f_n be n orthogonal idempotents. Let δ be the set of all tiled R-orders Λ in $M_n(K)$ such that gl dim $\Lambda < \infty$ and $f_i \in \Lambda$ for $1 \le i \le n$. Then δ satisfies the descending chain condition.

Proof. Let $\Lambda_1 \supseteq \Lambda_2 \supseteq \mathbf{r} \cdots \supseteq \Lambda_j \supseteq \Lambda_{j+1} \supseteq \cdots$ be a descending chain of tiled R-orders in S. By Proposition 3 of [9, p. 77] we have a unit u in $M_n(K)$ such that, for all j, $u\Lambda_j u^{-1}$ is a tiled R-order in $M_n(K)$ containing e_{ii} , $1 \le i \le n$. By Lemma 1.1 we have a unit y in $M_n(K)$ such that $yu\Lambda_1 u^{-1} y^{-1} \subseteq M_n(R)$ and $ye_{ii}y^{-1} = e_{ji}$ for all i. Set z = yu. Then clearly

$$z\Lambda_1z^{-1} \supseteq z\Lambda_2z^{-1} \supseteq \cdots \supseteq z\Lambda_iz^{-1} \supseteq z\Lambda_{i+1}z^{-1} \supseteq \cdots$$

is a descending chain of tiled R-orders in M(R). Furthermore, for all j, gl dim $z\Lambda_jz^{-1}<\infty$ and $e_{ii}\in z\Lambda_jz^{-1}$, $1\leq i\leq n$. Hence by Theorem 2.3(2) we have an integer l such that $z\Lambda_jz^{-1}=z\Lambda_{j+1}z^{-1}$ for all $j\geq l$. Consequently $\Lambda_j=\Lambda_{j+1}$ for all $j\geq l$. This completes the proof.

Theorem 2.5. Let R be a DVR with quotient field K. Let S_1, S_2, \dots, S_k be a finite collection of sets, where each S_j is a set of n orthogonal idempotents in $M_n(K)$. Let δ be the collection of all tiled R-orders Λ in $M_n(K)$ such that $S_j \subset \Lambda$ for some j and $gl \dim \Lambda < \infty$. Then δ satisfies DCC.

Proof. Let

(*)
$$\Lambda_1 \supseteq \Lambda_2 \supseteq \cdots \supseteq \Lambda_i \supseteq \Lambda_{i+1} \supseteq \cdots$$

be a descending chain of tiled R -orders in δ . Let $\delta_j = \{\Lambda_i : \Lambda_i \supset S_j\}$, $1 \le j \le k$. If δ_j is nonempty, then by Proposition 2.4 we have a natural number μ_j such that $\Lambda_i = \Lambda_{\mu_j}$ for all $i \ge \mu_j$. If δ_j is empty set $\mu_j = 0$. Let $\mu = \max_{1 \le j \le k} \mu_j$. Let $i \ge \mu$. Since $\Lambda_i \in \delta_j$ for some j, therefore $\Lambda_i = \Lambda_{\mu_j} = \Lambda_{\mu}$. This shows that the chain (*) terminates. This completes the proof.

The above theorem shows that for a large class of R-orders in $M_n(K)$, Tarsey's conjecture [12] is true.

Theorem 2.6. Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ be a tiled R-order with gl dim $\Lambda < \infty$. Let Γ be the set of matrices obtained from Λ by replacing the entries above the main diagonal by arbitrary entries from R. If Γ is a ring, then gl dim $\Gamma < \infty$.

Proof. By the hypothesis $\Gamma = (\mathfrak{m}^{\gamma_{ij}}) \subseteq M_n(R)$, where $\gamma_{ij} = \lambda_{ij}$ for i > j and $\gamma_{ij} = 0$ otherwise, is a ring. Hence Γ is a triangular tiled R-order. By Theorem 1 of [5], to show that gl dim $\Gamma < \infty$ it is enough to show that $\gamma_{k+1,k} \leq 1$ for $1 \leq k \leq n-1$. Fix an integer k between 1 and n-1. Since gl dim $\Lambda < \infty$, therefore by Lemma 2.1 we have integers $i \geq k+1$ and $j \leq k$ such that $\lambda_{ij} \leq 1$. Since i > j, $\gamma_{ij} = \lambda_{ij} \leq 1$. But then, by 0.2, we have $\gamma_{k+1,k} \leq \gamma_{k+1,j} \leq \gamma_{ij} \leq 1$. Thus $\gamma_{k+1,k} \leq 1$. This completes the proof.

Lemma 2.7. Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ be a reduced tiled R-order with gl dim $\Lambda < \infty$. Then for any integer k, $1 \le k \le n$, there exists an integer $\mu_k \ne k$, depending on k, such that $\lambda_{k,\mu_k} + \lambda_{\mu_k,k} = 1$.

Proof. Fix $k \leq n$. Suppose that $\lambda_{jk} + \lambda_{kj} \geq 2$ for all $j \neq k$. Λ is reduced, therefore by Remark 2 at the end of §1 of [7], $J(\Lambda)$ is obtained from Λ by replacing the diagonal entries R by \mathfrak{m} . It is easy to see that the right Λ -module $J_k = e_{kk}\Lambda$ satisfies the conditions of Lemma 1.7(3) with s = k, and therefore $\mathrm{hd}_{\Lambda}J_k = \infty$. This contradicts the hypothesis that gl dim $\Lambda < \infty$. Thus for some integer $\mu_k \neq k$ we must have $\lambda_{\mu_k,k} + \lambda_{k,\mu_k} \leq 1$. Since Λ is reduced and $\mu_k \neq k$, $\lambda_{\mu_k,k} + \lambda_{k,\mu_k} = 1$.

Corollary 2.8. Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ be a tiled R-order. Assume that $\lambda_{1j} = 0$ for all j and $\lambda_{ij} > 0$ whenever $i \geq 2$ and $i \neq j$. Then $gl \dim \Lambda < \infty$ if and only if $\lambda_{ij} = 1$ whenever $i \geq 2$ and $i \neq j$.

Proof. The "if" part follows from Proposition 3.3 of [7]. We now prove the "only if" part. Clearly Λ is reduced. Hence by Lemma 2.7, for every integer

 $i,\ 1\leq i\leq n$, we have an integer $\mu_i\neq i$ such that $\lambda_{\mu_i,i}+\lambda_{i,\mu_i}=1$. If $\mu_i\geq 2$ and $i\geq 2$, then by the hypothesis we have $\lambda_{\mu_i,i}+\lambda_{i,\mu_i}\geq 2$. Thus, if $i\geq 2$, then we must have $\mu_i=1$, so that $\lambda_{\mu_i,i}=\lambda_{1i}=0$ and $\lambda_{i1}=\lambda_{i,\mu_i}=1$. Hence $0<\lambda_{ij}\leq \lambda_{i1}+\lambda_{1j}\leq 1$, whenever $i\geq 2$ and $i\neq j$. This completes the proof.

In [5] we have seen that the triangular tiled R-order $\Omega_n = (m^{\omega_{ij}}) \subseteq M_n(R)$, where $\omega_{ij} = i - j$ for i > j and $\omega_{ij} = 0$ otherwise, plays an important role. We now show that if $\Lambda = (m^{\lambda_{ij}}) \subseteq M_n(R)$ is a tiled order of finite global dimension and if $\lambda_{ij} = n - 1$ for some $i \neq j$, then Λ is permutationally conjugate to the tiled R-order Ω_n . This in particular shows that if we disturb even slightly the "upper triangle" of Ω_n by replacing R by a proper ideal of R, then we end up with a tiled R-order of infinite global dimension. First we need a proposition.

Proposition 2.9. Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ be a tiled R-order. Assume that

$$\lambda_{i,i-1} = 1 \quad \text{for } 2 \le i \le n, \qquad \lambda_{i,i-3} = 3 \cdot \text{for } 4 \le i \le n,$$

$$\lambda_{i,i-2} = 2 \quad \text{for } 3 \le i \le n, \qquad \lambda_{ij} \ge 3 \quad \text{for } i-j \ge 4.$$

Then gl dim $\Lambda < \infty$ if and only if Λ is a triangular tiled R-order.

Proof. The "if" part follows from Theorem 1 of [5]. We now prove the "only if" part. First, we observe that if $\lambda_{i,i+1} = 0$ for all i, then $\lambda_{i,i+2} = 0$ for all i, since by 0.1 we have $0 \le \lambda_{i,i+2} \le \lambda_{i,i+1} + \lambda_{i+1,i+2} \le 0$. Repeating this argument one can show that $\lambda_{i,i+j} = 0$ for all $j \ge 1$, so that Λ is a triangular tiled R-order. Thus to prove the "only if" part it is enough to show that $\lambda_{i,i+1} = 0$ for all $i \ge 1$. Since $\lambda_{ij} > 0$ whenever i > j, Λ is reduced. By the assumption gl dim $\Lambda < \infty$, therefore by Lemma 2.7 we have natural numbers $\mu_1 \neq 1$ and $\mu_n \neq n$ such that $\lambda_{1,\mu_1} + \lambda_{\mu_1,1} = 1$ and $\lambda_{n,\mu_n} + \lambda_{\mu_n,n} = 1$. Also by the hypothesis $\lambda_{21} = 1$, $\lambda_{i,1} \ge 2$ for $3 \le i \le n$; and $\lambda_{n,n-1} = 1$, $\lambda_{n,i} \ge 2$ for $1 \le i \le n-2$. Hence, we must have $\mu_1 = 2$, $\mu_n = n - 1$ and $\lambda_{12} = 0 = \lambda_{n-1,n}$. If n = 3, then we are done. So assume that $n \ge 4$. Fix an integer k, where $2 \le k \le n-2$. Set $\alpha_i = 2$ for $i \le k-1$, $\alpha_k = \alpha_{k+1} = 1$ and $\alpha_i = 0$ for $k+2 \le i \le n$. If $\lambda_{k,k+1} > 0$, then one can easily check that the conditions of Lemma 1.7(1) and (2) for the right A-module B are satisfied with s = k, and therefore $hd_k B = \infty$. This contradicts the assumption that gl dim $\Lambda < \infty$. Thus we must have $\lambda_{k,k+1} = 0$. This completes the proof of the proposition.

Corollary 2.10. Let $\Lambda = (\mathfrak{m}^{\lambda} ij) \subseteq M_n(R)$ be a tiled R-order. Assume that $\lambda_{ij} = i - j$ whenever i > j. Then gldim $\Lambda < \infty$ if and only if $\Lambda = \Omega_n$, where $\Omega_n = (\mathfrak{m}^{\omega} ij) \subseteq M_n(R)$ with $\omega_{ij} = i - j$ whenever i > j and $\omega_{ij} = 0$ otherwise.

Proof. The proof is a direct application of Proposition 2.9.

Theorem 2.11. Let R be a DVR with maximal ideal m and the quotient field K. Let $\Lambda = (m^{\lambda_{ij}}) \subseteq M_n(R)$ be a tiled R-order of finite global dimension. If $\lambda_{ij} = n-1$ for some $i \neq j$, then Λ is permutationally conjugate to Ω_n , where Ω_n is as defined in Corollary 2.10.

Proof. If Λ is not reduced, then we have $\lambda_{k,l} = \lambda_{l,k} = 0$ for some $k \neq l$. Hence, Λ is Morita equivalent to the tiled R-order Γ obtained from Λ by deleting the lth row and the lth column. Since gl dim $\Gamma = \operatorname{gl} \operatorname{dim} \Lambda < \infty$, Theorem 2.3(1) yields $\lambda_{ij} \le n-2$ for $1 \le i$, $j \le n$, $i \ne l$, $j \ne l$. By using 0.1, it is easy to see that $\lambda_{ki} = \lambda_{li}$ and $\lambda_{ik} = \lambda_{il}$ for $1 \le i \le n$, and therefore we must have $\lambda_{ii} \le n-2$ for all i, j. But by the hypothesis $\lambda_{ij} = n - 1$ for some $i \neq j$; hence it follows that Λ is reduced. We now observe that to prove the theorem it is enough to show that Λ is permutationally conjugate to a tiled R-order $\Gamma = (\mathfrak{m}^{\gamma_{ij}}) \subseteq M_n(R)$, where $\gamma_{ij} = i - j$ for i > j, since then by Corollary 2.10 we have $\Gamma = \Omega_n$. By interchanging suitable rows and columns we may assume that $\lambda_{n1} = n - 1$. By Theorem 2.3(1) we have $\lambda_{i,1} \leq n-1$ for all i. By permuting rows and columns of Λ through 2 to n, we may further assume that λ_{i1} is an increasing function of i. But $\lambda_{n1} = n - 1$; therefore by Lemma 2.2(2) and (3) we must have $\lambda_{i,1} = i - 1$ for $1 \le i \le n - 1$. Hence, by 0.1, we have $i = \lambda_{i+1,1} \le \lambda_{i+1,i} + \lambda_{i,1} = \lambda_{i+1,i} + i - 1$ for all i. This shows that $\lambda_{i+1,j} \geq 1$. By Lemma 2.1 we have integers $s \geq i+1$ and $j \leq i$ such that $\lambda_{s,i} \leq 1$. By the monotonicity of $\lambda_{i,1}$ and 0.1 we have

$$i=\lambda_{i+1,1}\leq \lambda_{s1}\leq \lambda_{sj}+\lambda_{j1}\leq 1+j-1=j\leq i.$$

Thus we have $i \leq s-1=\lambda_{s\,1} \leq j \leq i$, and therefore i=j=s-1 and $\lambda_{i+1,i}=\lambda_{sj} \leq 1$. All this shows that $\lambda_{i+1,i}=1$ for all i. We now show that $\lambda_{ij}=i-j$ whenever i>j. By 0.1 we have $\lambda_{i\,1} \leq \lambda_{i\,j}+\lambda_{j\,1}$, i.e., $i-1 \leq \lambda_{i\,j}+j-1$. Hence $\lambda_{i\,j} \geq i-j$. To show that $\lambda_{i\,j} \leq i-j$ whenever i>j we use induction on i. When i=2, we have j=1. Since $\lambda_{2\,1}=1$, the statement is true when i=2. Let $i\geq 3$ and let j< i. By 0.1 we have $\lambda_{i\,j} \leq \lambda_{i\,,\,i-1}+\lambda_{i-1\,,\,j}$. Hence by the induction hypothesis we have $\lambda_{i\,j} \leq 1+(i-1)-j=i-j$. This completes the induction and shows that $\lambda_{i\,j}=i-j$ whenever i>j. This completes the proof.

3. Characterization of triangular tiled orders. In this section we obtain an intrinsic characterization of a triangular tiled order, i.e., we give, in terms of λ_{ij} , a necessary and sufficient condition for a tiled R-order $\Lambda = (\mathfrak{m}^{\lambda ij}) \subseteq M_n(R)$ to be conjugate to a triangular tiled R-order in $M_n(R)$. If n=2, Λ is always conjugate to a triangular tiled R-order by Lemma 1.1. So throughout this section we assume that $n \geq 3$.

Lemma 3.1. Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ be a tiled R-order. Fix a natural number $i \le n$. Let $\{i_1, i_2, \dots, i_{n-1}\}$ be a permutation of the set $\{1, 2, \dots, i-1, i+1, i+1, \dots, i-1, \dots, i-1$..., n}. If for some fixed integer j, where $1 \le j \le n-1$, we have λ_{i,i_s} + $\begin{array}{l} \lambda_{i_{s},i_{s+1}}=\lambda_{i,i_{s+1}} & whenever \ s\geq j, \ then \\ \text{(a)} \ \lambda_{i,i_{l}}+\lambda_{i_{l},i_{k}}=\lambda_{i,i_{k}} & \text{for } k\geq l\geq j. \\ \text{(b)} \ Furthermore, if } \ \Lambda \ is \ reduced, \ then \ \lambda_{i,i_{k}}+\lambda_{i_{k}i_{l}}>\lambda_{i,i_{l}} & \text{for } k>l\geq j. \end{array}$

Proof. First, we prove (a) by using an induction on k. Fix $l \ge j$. Obviously (a) holds when k = l. By 0.1 we have

$$\begin{split} \lambda_{i,i_{k+1}} & \leq \lambda_{i,i_l} + \lambda_{i_l,i_{k+1}} \leq \lambda_{i,i_l} + \lambda_{i_l,i_k} + \lambda_{i_k,i_{k+1}} \\ & = \lambda_{i,i_k} + \lambda_{i_k,i_{k+1}}, \quad \text{by the induction hypothesis,} \\ & = \lambda_{i,i_{k+1}} \quad \text{by the hypothesis as } k \geq j. \end{split}$$

Thus we have proved that

$$\lambda_{i,i_{k+1}} \leq \lambda_{i,i_l} + \lambda_{i_l,i_{k+1}} \leq \lambda_{i,i_{k+1}}.$$

Consequently, $\lambda_{i,i_{k+1}} = \lambda_{i,i_l} + \lambda_{i_l,i_{k+1}}$. This completes the induction and proves (a).

We now prove (b). By (a) we have $\lambda_{i,i_k} + \lambda_{i_k,i_l} = \lambda_{i,i_l} + \lambda_{i_l,i_k} + \lambda_{i_k,i_l}$ whenever $k \ge l \ge j$. Since Λ is reduced, $\lambda_{i_l,i_k} + \lambda_{i_k,i_l} > 0$ whenever $k \ne l$. Thus we have $\lambda_{i,i_k} + \lambda_{i_k,i_l} > \lambda_{i,i_l}$ whenever $k > l \ge j$. This completes the proof of the lemma.

Proposition 3.2. Let $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ be a tiled R-order. If for some fixed integer i, where $1 \le i \le n$, there exists a permutation $\{i_1, i_2, \dots, i_{n-1}\}$ of the set $\{1, 2, \dots, i-1, i+1, \dots, n\}$ such that $\lambda_{i,i_k} + \lambda_{i_k,i_{k+1}} = \lambda_{i,i_{k+1}}$ for $1 \le k \le n-2$, then Λ is conjugate to a triangular tiled R-order.

Proof. Set $i_0 = i$. Hence we have $\lambda_{i,i_0} + \lambda_{i_0,i_k} = \lambda_{i,i_k}$ for all $k \ge 0$. By the hypothesis $\lambda_{i,i_k} + \lambda_{i_k,i_{k+1}} = \lambda_{i,i_{k+1}}$ for $k \ge 1$, therefore using Lemma 3.1 with j = 1 one concludes that

(#)
$$\lambda_{i,i_l} + \lambda_{i_l,i_k} = \lambda_{i,i_k} \quad \text{whenever } k \ge l \ge 0.$$

Let $y = (y_{sj})$ and $z = (z_{sj})$ be the matrices in $M_n(K)$, where if m = tR, then

$$y_{k+1,i_k} = t^{\lambda_{i,i_k}}, z_{i_k,k+1} = t^{-\lambda_{i,i_k}}$$
 for $0 \le k \le n-1$;

and

$$y_{si} = z_{si} = 0$$
 otherwise.

Then, yz = zy = 1. Set $\Gamma = y\Lambda y^{-1}$. We show that $\Gamma = (\Gamma_{sj}) \subseteq M_n(R)$ and is a a triangular tiled R-order. To show this we must show that $\Gamma_{sj} = R$ whenever $s \le j$. Clearly, $\Gamma = y\Lambda y^{-1} = (y_{sj})(\Lambda_{sj})(z_{sj})$; therefore using the matrix multiplication we get

$$\begin{split} \Gamma_{sj} &= \sum_{u,v} y_{su} \Lambda_{uv} z_{vj} = y_{s,i_{s-1}} \Lambda_{i_{s-1},i_{j-1}} z_{i_{j-1},j} \\ &= \sum_{t=1}^{\lambda_{i,i_{s-1}}} \lambda_{i_{s-1},i_{j-1}} \sum_{t=1}^{\lambda_{i,i_{s-1}}} \lambda_{i_{s-1},i_{s-1}} z_{i_{s-1},i_{s-1}} z_{i_{s-1},i_{s-1}} z_{i_{s-1},i_{s-1}} z_{i_{s-1},i_{s-1},i_{s-1}} z_{i_{s-1},i$$

Now from 0.1 and (#) it follows that $\Gamma_{sj} \subseteq R$ whenever s > j and $\Gamma_{sj} = R$ whenever $s \le j$. Thus Γ is a triangular tiled R-order.

Theorem 3.3. Let $\Lambda = (\mathfrak{m}^{\lambda} ij) \subseteq M_n(R)$, $n \geq 3$, be a reduced tiled R-order, where R is a DVR with maximal ideal \mathfrak{m} . Then Λ is conjugate to a triangular tiled R-order in $M_n(R)$ if and only if for some natural number $i \leq n$, there exists a permutation $\{i_1, i_2, \dots, i_{n-1}\}$ of $\{1, 2, \dots, i-1, i+1, \dots, n\}$ such that

$$\lambda_{i,i_k} + \lambda_{i_k,i_{k+1}} = \lambda_{i,i_{k+1}} \quad \text{for } 1 \le k \le n-2.$$

Proof. The "if" part follows from Proposition 3.2. We now prove the "only if" part. So, assume that Λ is conjugate to a triangular tiled R-order in $M_n(R)$. By Proposition 1.9 of [7] we have a natural number $i \leq n$ such that

$$(*) \qquad \overline{P}_i \supseteq \overline{P}_i J(\overline{\Lambda}) \supseteq \cdots \supseteq \overline{P}_i J^{n-1}(\overline{\Lambda}) \supseteq \overline{P}_i J^n(\overline{\Lambda}) = 0$$

is a composition series of \overline{P}_i considered as a right $\overline{\Lambda}$ -module, where \overline{P}_i and $\overline{\Lambda}$ are as defined in §1 of this paper. Since $[\overline{P}_i:R/m]:=n$ and since (*) is a composition series, it follows that $[\overline{P}_iJ^k(\overline{\Lambda}):R/m]=n-k$ for $k\geq 1$. We claim that there exists a permutation $\{i_1,i_2,\cdots,i_{n-1}\}$ of the set $\{1,2,\cdots,i-1,i+1,\cdots,n\}$ such that $\overline{P}_iJ^{s+1}(\overline{\Lambda})$ is obtained from $\overline{P}_iJ^s(\overline{\Lambda})$ by replacing the i_s th entry $m^{\lambda_i,i_s}/m^{\lambda_i,i_s+1}$ by zero. We will construct i_s inductively. Recall that, since Λ is reduced, $J(\overline{\Lambda})$ is obtained from $\overline{\Lambda}$ by replacing the diagonal entries R/m by zero. Since $\overline{P}_iJ^2(\overline{\Lambda})$ is a right $\overline{\Lambda}$ -module, $\overline{P}_iJ^2(\overline{\Lambda})\supseteq \overline{P}_iJ^2(\overline{\Lambda})\overline{e}_{jj}$ for all j. Also, $\overline{P}_iJ(\overline{\Lambda})\supseteq \overline{P}_iJ^2(\overline{\Lambda})$, $[\overline{P}_iJ^k(\overline{\Lambda}):R/m]=n-k$ for k=1,2. Therefore we obtain an integer $i_1\neq i$ such that $\overline{P}_iJ^2(\overline{\Lambda})$ is obtained from $\overline{P}_iJ(\overline{\Lambda})$ by replacing the i_1 th entry $m^{\lambda_i,i_1}/m^{\lambda_i,i_1+1}$ by zero. A similar argument and induction proves our claim. We observe that in particular $\overline{P}_iJ^{s+1}(\overline{\Lambda})$ is obtained from $\overline{P}_iJ(\overline{\Lambda})$ by replacing i_k th entry, $1\leq k\leq s\leq n-1$, $m^{\lambda_i,i_k}/m^{\lambda_i,i_k+1}$ by zero. To complete the proof we now show that

$$\lambda_{i,i_k} + \lambda_{i_k,i_{k+1}} = \lambda_{i,i_{k+1}} \quad \text{whenever } 1 \le k \le n-2.$$

Since $\overline{P}_i J^{n-1}(\overline{\Lambda}) = \overline{P}_i J^{n-2}(\overline{\Lambda}) J(\overline{\Lambda})$, it follows that

$$(\mathfrak{m}^{\lambda_{i,i_{n-2}}}/\mathfrak{m}^{\lambda_{i,i_{n-2}}+1}) \cdot (\mathfrak{m}^{\lambda_{i_{n-2},i_{n-1}}}/\mathfrak{m}^{\lambda_{i_{n-2},i_{n-1}}+1})$$

$$= \mathfrak{m}^{\lambda_{i,i_{n-1}}} \operatorname{mod} \mathfrak{m}^{\lambda_{i,i_{n-1}}+1}$$

Since the multiplication in $\overline{\Lambda}$ is induced by that in Λ , and since by 0.1 we have $\lambda_{i,i_{n-2}} + \lambda_{i_{n-2},i_{n-1}} \geq \lambda_{i,i_{n-1}}$, it follows that $\lambda_{i,i_{n-2}} + \lambda_{i_{n-2},i_{n-1}} = \lambda_{i,i_{n-1}}$. If n=3, we are done. If $n\geq 4$, we use an induction on s. So, assume that $\lambda_{i,i_k} + \lambda_{i_k,i_{k+1}} = \lambda_{i,i_{k+1}}$ for $k\geq s+2$.

Then Lemma 3.1(b) yields $\lambda_{i,i_k} + \lambda_{i_k,i_{s+2}} > \lambda_{i,i_{s+2}}$ whenever k > s+2. Since $\overline{P}_i J^{j+1}(\overline{\Lambda})$ is obtained from $\overline{P}_i J(\overline{\Lambda})$ by replacing the i_l th entry, $1 \le l \le j \le n-1$, by zero, and since $\overline{P}_i J^{s+2}(\overline{\Lambda}) = \overline{P}_i J^{s+1}(\overline{\Lambda}) J(\overline{\Lambda})$, we must have

This together with the induction hypothesis yields $\lambda_{i,i_{s+1}} + \lambda_{i_{s+1},i_{s+2}} = \lambda_{i,i_{s+2}}$. This completes the induction on s and also completes the proof of the "only if" part.

4. Tiled orders in $M_n(K)$, where $2 \le n \le 4$. In this section we study tiled R-orders in $M_n(K)$ of finite global dimension with the restriction that $2 \le n \le 4$. The machinery developed in the first three sections enables us to give a complete classification of tiled R-orders in $M_4(K)$ of finite global dimension (Theorem 4.2). As another application of the developed machinery we prove Proposition 4.1, first proved by R. B Tarsey ([11], [12]). Our proof is different from that given by Tarsey and is also less computational. Throughout this section Ω_n will denote the tiled R-order $(m^{\omega_{ij}}) \subseteq M_n(R)$, where $\omega_{ij} = i - j$ for i > j and $\omega_{ij} = 0$ otherwise.

Proposition 4.1. (a) Let Λ be a tiled R-order in $M_n(K)$, where n=2 or 3. Then gl dim $\Lambda < \infty$ if and only if Λ is conjugate to a triangular tiled R-order in M (R) of finite global dimension.

"(b) $M_2(R)$ and Ω_2 are, up to conjugation, the only tiled R-orders in $M_2(K)$ of finite global dimension.

(c) There are, up to conjugation, only four tiled R-orders in $M_3(K)$ of finite global dimension, and these are defined as follows: (i) $M_3(R)$, (ii) Ω_3 ; (iii) $\Gamma = (\mathfrak{m}^{\gamma ij}) \subseteq M_3(R)$, where $\gamma_{ij} = 1$ whenever i > j and $\gamma_{ij} = 0$ otherwise; (iv) $\Gamma = (\mathfrak{m}^{\gamma ij}) \subseteq M_3(R)$, where $\gamma_{31} = \gamma_{32} = 1$ and $\gamma_{ij} = 0$ otherwise.

Proof. The "if" part of (a) is trivial. We now prove (b), (c) and the "only if" part of (a) simultaneously. As seen before Λ is conjugate to a tiled R-order containing e_{ii} , $1 \le i \le n$. So we may as well assume that Λ is of the form $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(K)$. By Lemma 1.1 we may further assume that $\lambda_{ij} \geq 0$ for all i, j; and $\lambda_{1} = 0$ for all i. Now let n = 2. If Λ is not reduced then we must have $\lambda_{21} = 0$, so that $\Lambda = M_2(R)$. If Λ is reduced then by Theorem 2.3(1) we have $\lambda_{21} = 1$ i.e., $\Lambda = \Omega_2$. Now let n = 3. By Theorem 2.3 we have $\lambda_{ij} \le 2$ for all i, j; and if $\lambda_{ij} = 2$ for some $i \neq j$, then by Theorem 2.11 we have that Λ is conjugate to the tiled R-order Ω_3 . So assume that $\lambda_{ij} \leq 1$. If Λ is reduced, then by Lemma 1.3 we may further assume that $\lambda_{ij} = 1$ for i > j and $\lambda_{23} = 0$ or 1. If $\lambda_{23} = 0$ then Λ is the tiled R-order defined in (iii) of (c). If $\lambda_{23} = 1$, then let $y = (y_{ij})$ in $M_3(K)$, where $y_{12} = 1$, $y_{21} = y_{33} = t$ (where tR = m), and $y_{ij} = 0$ otherwise. A direct computation shows that $y\Lambda y^{-1} = \Omega_3$. Now assume that Λ is not reduced. Then we have $\lambda_{kl} = \lambda_{lk} = 0$ for some $k \neq l$. If l = 1, then by interchanging suitable rows and columns we may assume that k=2, i.e., $\lambda_{21}=$ $\lambda_{12} = 0$. Then using (0.1) one gets that $\lambda_{23} = 0$ and $\lambda_{31} = \lambda_{32} \le 1$.

So, either $\Lambda=M_3(R)$ or Λ is the order defined in (iv) of (c). Now assume that both of k and l are different from 1, so that $\lambda_{23}=\lambda_{32}=0$. By 0.1, we have $\lambda_{21}=\lambda_{31}\leq 1$. If $\lambda_{21}=\lambda_{31}=0$, then $\Lambda=M_3(R)$. If not, set $y=(y_{ij})$ in $M_3(K)$, where $y_{12}=y_{23}=1$, $y_{31}=t$ and $y_{ij}=0$ otherwise. Then $y\Lambda y^{-1}$ is the tiled R-order defined in (iv) of (c).

Lastly it is easy to see that none of the tiled R-orders defined in (c) is conjugate to the other. This completes the proof of the proposition.

Theorem 4.2. Let R be a discrete valuation ring with maximal ideal m generated by t, and quotient field K. Let Λ be a tiled R-order in $M_4(K)$. Then $\operatorname{gl\,dim} \Lambda < \infty$ if and only if Λ is conjugate to a triangular tiled R-order in $M_4(R)$ of finite global dimension or Λ is conjugate to the tiled R-order $\Gamma = (\mathfrak{m}^{\gamma_{ij}}) \subseteq M_4(R)$, where $\gamma_{1i} = 0 = \gamma_{ii}$ for all i, and $\gamma_{ii} = 1$ otherwise.

Proof. The "if" part follows from Corollary 2.8. We now prove the "only if" part. As Λ is conjugate to a tiled R-order in $M_4(K)$ containing e_{ii} , $1 \le i \le 4$, we may as well assume that Λ is of the form $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_4(K)$. By Lemma 1.1, we may further assume that $\lambda_{ij} \ge 0$, $\lambda_{1i} = 0$ for all i, j. First we consider the case when Λ is reduced. Then, by Lemma 1.3, we may in addition assume that

 $\lambda_{ij} > 0$ whenever i > j. Thus we have $\Lambda = (\mathfrak{m}^{\lambda \, ij}) \subseteq M_4(R)$ with $\lambda_{ii} = \lambda_{1i} = 0$ for all i and $\lambda_{21}, \lambda_{31}, \lambda_{32}, \lambda_{41}, \lambda_{42}, \lambda_{43}$ are strictly positive. Hence we must consider various cases according as $\lambda_{23}, \lambda_{24}, \lambda_{34}$ are strictly positive or not. It is easy to see that up to conjugation we have to discuss only the following five types of tiled R-orders:

Type I. $\lambda_{23} = \lambda_{24} = \lambda_{34} = 0$. Type II. λ_{23} , λ_{24} , $\lambda_{34} > 0$. Type III. λ_{23} , $\lambda_{24} > 0$, $\lambda_{34} = 0$. Type IV. $\lambda_{23} = 0 = \lambda_{24}$, $\lambda_{34} > 0$. Type V. $\lambda_{23} > 0$, $\lambda_{24} = \lambda_{34} = 0$.

Since Type I is a case of triangular tiled R-order, this case is settled. In Type II, since gl dim $\Lambda < \infty$, we must have $\lambda_{ij} = 1$ whenever $i \neq j$ and $i \geq 2$, by Corollary 2.8. Thus $\Lambda = \Gamma$. Now let us discuss Type III. Clearly Λ is reduced, gl dim $\Lambda < \infty$, $\lambda_{23} + \lambda_{32} \ge 2$ and $\lambda_{24} + \lambda_{42} \ge 2$; therefore, by applying Lemma 2.7 with k=2, we get that $\lambda_{21}=1$. Since $0 < \lambda_{2i} \le \lambda_{21} + \lambda_{1i} = 1$ for $i = 3, 4, \ \lambda_{23} = \lambda_{24} = 1$. But then $\lambda_{21} + \lambda_{13} = \lambda_{23}$ and $\lambda_{23} + \lambda_{34} = \lambda_{24}$. Therefore Proposition 3.2 applies with i=2 for the permutation $\begin{pmatrix} 1 & 3 & 4 \\ 1 & 3 & 4 \end{pmatrix}$, so that Λ is conjugate to a triangular tiled R-order. We now look at Type IV. Since $\lambda_{1,j}$ $\lambda_{2j} = 0$ for j = 2, 3, 4, therefore $e_{11} \Lambda e'$ is a projective right $e' \Lambda e'$ -module, where $e' = \sum_{i=2}^{4} e_{ii}$. Hence by the analogue of Theorem 2.5 of [7], we have gl dim $e' \Lambda e'$ $< \infty$ and $\sum_{i\neq 1}^{i} m^{\lambda_{1}i + \lambda_{i}} = R$ or m as m is the only proper ideal l of R with gl dim $(R/I) < \infty$. Since $\lambda_{1i} = 0$ for all i, we have $\sum_{i \neq 1} m^{\lambda_{1i} + \lambda_{i1}} = \sum m^{\lambda_{i1}}$. Since Λ is reduced, $\lambda_{i,1} > 0$ for $i \neq 1$. Hence we must have $\sum_{i \neq 1} m^{\lambda_{i,1}} = m$. Thus $\lambda_{i1} = 1$ for some $i \ge 2$. Since $\lambda_{23} = 0 = \lambda_{24}$ and since $0 < \lambda_{21} \le \lambda_{2i} + \lambda_{i1} = \lambda_{i1}$ for i = 3, 4, therefore it follows that $\lambda_{21} = 1$. Again, λ_{32} , λ_{34} , λ_{42} , $\lambda_{43} > 0$ and gl dim $e'\Lambda e' < \infty$, therefore by Corollary 2.8 we must have $\lambda_{32} = \lambda_{34} = \lambda_{42} = \lambda_{43} = 1$. Clearly $0 < \lambda_{i1} \le \lambda_{i2} + \lambda_{21} = 2$ for i = 3, 4; therefore $\lambda_{i1} = 1$ or 2 whenever i=3 or 4. If $\lambda_{31}=1$ then $\lambda_{31}+\lambda_{12}=\lambda_{32}$, $\lambda_{32}+\lambda_{24}=\lambda_{34}$, so that Λ is conjugate to a triangular tiled R-order, by Proposition 3.2. If $\lambda_{41} = 1$, then $\lambda_{41} + \lambda_{12} = \lambda_{42}$, $\lambda_{42} + \lambda_{23} = \lambda_{43}$, so again, by Proposition 3.2, we have that Λ is conjugate to a triangular tiled R-order. If $\lambda_{31} = \lambda_{41} = 2$, then let $y = (y_{ij})$ in $M_4(K)$, where $y_{12} = 1 = y_{33} = y_{44}$, $y_{21} = t$, $y_{ij} = 0$ otherwise. Computation shows that $y\Lambda y^{-1} = \Gamma$.

Lastly we turn to Type V. Since the number of R in Λ is 9 and since the number of R in Ω_4 is 10, Λ cannot be permutationally conjugate to Ω_4 . Thus, by Theorems 2.3(1) and 2.11, we must have $\lambda_{ij} \leq 2$ for all i, j. Since $\lambda_{i4} = 0$ for all i, we have, by Lemma 2.7 applied to Λ with k = 4, that $\lambda_{4i} = 1$ for some $i \leq 3$. If $\lambda_{41} = 1$, then, since Λ is a ring, it follows, by 0.1, that $\lambda_{21} = \lambda_{23} = 1$. Hence we have $\lambda_{24} + \lambda_{41} = \lambda_{21}$, $\lambda_{21} + \lambda_{13} = \lambda_{23}$. Thus, by Proposition 3.2, Λ

is conjugate to a triangular tiled R-order. So assume that $\lambda_{41}=2$ and $\lambda_{4i}=1$ for i=2 or 3. By interchanging the 2nd and the 3rd rows and columns we may assume that $\lambda_{43}=1$. Note that this permutation keeps us in Type V. Since $0 < \lambda_{23} \le \lambda_{24} + \lambda_{43} = 1$, $\lambda_{23}=1$. Also, by Lemma 2.7, applied to Λ with k=1, we have $\lambda_{21}=1$ or $\lambda_{31}=1$. Since all $\lambda_{ij} \le 2$, to complete the discussion of Type V, we have to discuss the following three subcases:

- (a) $\lambda_{21} = 1 = \lambda_{31}$;
- (b) $\lambda_{21} = 2$, $\lambda_{31} = 1$;
- (c) $\lambda_{21} = 1$, $\lambda_{31} = 2$.

Case (a). Let $\lambda_{21} = \lambda_{31} = 1$. Clearly, $0 < \lambda_{32} \le \lambda_{31} + \lambda_{12} = 1$; therefore $\lambda_{32} = 1$. If $\lambda_{42} = 1$, then it is easy to check that

$$tP_1 + P_4 = J_2$$
, $tP_1 \cap P_4 \cong J_1$; $P_2 + P_3 = J_1$, $P_2 \cap P_3 = J_2$,

where $P_i = e_{ii}\Lambda$ and $J_i = e_{ii}J(\Lambda)$. By Theorem 1 of [10], Λ is a semiperfect ring; therefore, by using Remarks (1) and (3) at the end of §1 of [7], it is easy to see that none of J_1 and J_2 is projective as a right Λ -module. Hence by using obvious short exact sequences and Theorem 2 of [8, p. 169] it follows that $hd_{\Lambda}J_2 = \infty$. But this contradicts the hypothesis that gl dim $\Lambda < \infty$. Thus $\lambda_{42} = 2$. But then we have $\lambda_{43} + \lambda_{31} = \lambda_{41}$, $\lambda_{41} + \lambda_{12} = \lambda_{42}$, so that Λ is conjugate to a triangular tiled R-order, by Proposition 3.2.

Case (b). Let $\lambda_{21}=2$, $\lambda_{31}=1$. Since $\lambda_{23}=1$, we have $\lambda_{24}+\lambda_{43}=\lambda_{23}$, $\lambda_{23}+\lambda_{31}=\lambda_{21}$. Hence Λ is conjugate to a triangular tiled R-order, by Proposition 3.2.

Case (c). Let $\lambda_{21}=1$, $\lambda_{31}=2$. Recall that $\lambda_{41}=2$. Hence by Lemma 3.1, applied with k=2, we have $\lambda_{32}=1$ or $\lambda_{42}=1$. Since $0<\lambda_{32}\leq\lambda_{34}+\lambda_{42}$ and $\lambda_{34}=0$, we have, in any case, $\lambda_{32}=1$. Further if $\lambda_{42}=1$, then we have $\lambda_{34}+\lambda_{42}=\lambda_{32}$, $\lambda_{32}+\lambda_{21}=\lambda_{31}$. Thus Proposition 3.2 guarantees that Λ is conjugate to a triangular tiled R-order. So assume that $\lambda_{42}=2$. Then one shows, since m=tR, that

$$\begin{split} &P_2 + P_3 = J_1, & P_2 \cap P_3 = J_3, \\ &t P_2 + P_4 = J_3, & t P_2 \cap P_4 = t J_2 \cong J_2, \\ &t P_1 + P_4 = J_2, & t P_1 \cap P_4 = J_4, \\ &t^2 P_1 + t P_3 = J_4, & t^2 P_1 \cap t P_3 = t^2 J_1 \cong J_1. \end{split}$$

Then by using obvious short exact sequences and Theorem 2 of [8, p. 169] we get $\operatorname{hd}_{\Lambda} J_i = \infty$ for all *i*. Thus $\lambda_{42} = 2$ is impossible. This completes the discussion of Cases (a), (b), and (c) and hence of Type V also. Thus the assertion of the theorem is proved when Λ is reduced.

Now assume that Λ is not reduced. Then we have $\lambda_{kl} = \lambda_{lk} = 0$ for some $k \neq l$. Recall that $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_4(R)$ and $\lambda_{ii} = \lambda_{1i} = 0$ for all i. First suppose that $\lambda_{k1} = \lambda_{1k} = 0$ for some $k \geq 2$. We may assume that k = 2. Then, since Λ is a ring, $\lambda_{23} = \lambda_{24} = 0$. If one of λ_{34} or λ_{43} is zero, then clearly Λ is permutationally conjugate to a triangular tiled R-order. So assume that $\lambda_{34}, \lambda_{43} > 0$. Since Λ is a ring we have $\lambda_{31} = \lambda_{32} > 0$, $\lambda_{41} = \lambda_{42} > 0$. Clearly $e_{11}\Lambda e'$ is a projective right $e'\Lambda e'$ -module where $e' = e_{22} + e_{33} + e_{44}$, and gl dim $\Lambda < \infty$; therefore by the analogue of Proposition 1.10(2) of [7] we have gl dim $e'\Lambda e' < \infty$. Hence by Corollary 2.8 we have $\lambda_{31} = \lambda_{32} = \lambda_{34} = \lambda_{41} = \lambda_{42} = \lambda_{43} = 1$. Then $\lambda_{31} + \lambda_{12} = \lambda_{32}, \ \lambda_{32} + \lambda_{24} = \lambda_{34}$, so that Λ is conjugate to a triangular tiled R-order by Proposition 3.2. Now assume that $\lambda_{kl} = \lambda_{lk} = 0$ where $k \neq l$, k, $l \geq 2$. The proof of this case is similar to the above and we leave it to the reader. This completes the proof of the theorem.

Corollary 4.3. If $\Lambda \subseteq M_n(K)$, $2 \le n \le 4$, is an arbitrary tiled R-order of finite global dimension, then gl dim $\Lambda \le n-1$.

Proof. Follows from Proposition 4.1, Theorem 4.2, Theorem 1 of [5] and Proposition 3.3 of [7].

The above corollary shows that the conjecture of R. B. Tarsey [12] about the bound on the global dimension is true when $n \le 4$.

Theorem 4.4. Let R be a Dedekind domain with quotient field K. Let Λ be an arbitrary tiled R-order in $M_n(K)$, where $2 \le n \le 4$. If gl dim $\Lambda < \infty$, then gl dim $\Lambda \le n-1$.

Proof. Follows from Corollary 4.3 and the corollary to Proposition 2.6 of [1]. K. L. Fields [4] in answer to a question of Kaplansky has constructed orders T and S in a central simple algebra Q over the quotient field of a DVR, such that $T \subset S$ gl dim T = 2 and gl dim $S = \infty$. We give simpler examples showing even worse behavior, viz., we construct a sequence of orders $\Lambda_1 \subsetneq \Lambda_2 \subsetneq \Lambda_3 \subsetneq \Lambda_4$ with gl dim $\Lambda_1 =$ gl dim $\Lambda_3 = \infty$, gl dim $\Lambda_2 = 3$, gl dim $\Lambda_4 = 2$. Let R be a DVR with maximal ideal m, generated by t, and quotient field K. Define Λ_i , $1 \le i \le 4$, by

$$\Lambda_{1} = \begin{pmatrix} R & R & R & R \\ m & R & m & R \\ m^{2} & m & R & R \\ m^{2} & m^{2} & m & R \end{pmatrix}, \qquad \Lambda_{2} = \begin{pmatrix} R & R & R & R \\ m & R & m & R \\ m & m & R & R \\ m^{2} & m^{2} & m & R \end{pmatrix},$$

$$\Lambda_{3} = \begin{pmatrix} R & R & R & R \\ m & R & m & R \\ m & m & R & R \\ m & m & R & R \\ m^{2} & m & m & R \end{pmatrix}, \qquad \Lambda_{4} = \begin{pmatrix} R & R & R & R \\ m & R & R & R \\ m & m & R & R \\ m & m & R & R \\ m^{2} & m & m & R \end{pmatrix}.$$

Clearly $\Lambda_1 \subsetneq \Lambda_2 \subsetneq \Lambda_3 \subsetneq \Lambda_4$, and one can easily verify that the Λ_i 's are rings, hence tiled R-orders in $M_4(K)$. In the proof of Theorem 4.2 we have seen that gl dim $\Lambda_1 = \infty$ and gl dim $\Lambda_3 = \infty$. Since Λ_4 is not hereditary, therefore by Theorems 1 and 2 of [5] we have gl dim $\Lambda_4 = 2$. We now show that gl dim $\Lambda_2 = 3$. Let $J_i = e_{ii}J(\Lambda_2)$, $P_i = e_{ii}\Lambda_2$. It is easy to check that

$$tP_1 + P_4 = J_2,$$
 $tP_1 \cap P_4 = J_4 = tP_3 \cong P_3,$
 $P_2 + P_3 = J_1,$ $P_2 \cap P_3 = J_2 \cong J_3,$

and J_2 is not a projective right Λ_2 -module. Using obvious short exact sequences and Theorem 2 of [8, p. 169] one concludes that hd $J(\Lambda_2) = 2$, so that gl dim $\Lambda_2 = 3$, by Lemma 1.2 of [7].

5. Some remarks. Let R be a DVR with maximal ideal \mathfrak{m} and quotient field K. Let Λ be a triangular tiled R-order in $M_n(K)$, i.e., $\Lambda = (\mathfrak{m}^{A\,ij}) \subseteq M_n(R)$, where $\lambda_{ij} = 0$ whenever $i \leq j$. Let $e = \sum_{i=1}^{n-1} e_{ii}$. Then, since $e\Lambda e_{nn}$ is a projective left $e\Lambda e$ -module, from Theorem 2.5 of [7] it follows that gl dim $\Lambda < \infty$ if and only if gl dim $e\Lambda e < \infty$ and $f(\Lambda)e_{nn}$ is a projective left Λ -module.

It is also easy to see that if $\Gamma = (m^{\gamma_{ij}}) \subseteq M_4(R)$ is a tiled R-order where $\gamma_{1i} = 0$ for all i, and $\gamma_{ij} = 1$ for $i \ge 2$ and $i \ne j$, then $J(\Gamma)e_{44}$ is a projective left Γ -module and that, by Corollary 2.8, gl dim $e\Gamma e < \infty$, where $e = e_{11} + e_{22} + e_{33}$.

All this together with the classification given in Proposition 4.1 and Theorem 4.2 shows that, if Λ is a tiled R-order in $M_n(K)$, $2 \le n \le 4$, containing n orthogonal idempotents f_1, f_2, \dots, f_n , then gl dim $\Lambda < \infty$ if and only if there exists a natural number $l \le n$ such that $J(\Lambda)f_l$ is a projective left Λ -module and gl dim $g\Lambda g < \infty$, where $g = \sum_{i \ne l} f_i$.

We say that a tiled R-order Λ in $M_n(K)$ containing n orthogonal idempotents f_1, f_2, \dots, f_n has the property P if there exists a natural number $l \leq n$ such that $(P_1) \ J(\Lambda) f_l$ is a projective left Λ -module or $f_l J(\Lambda)$ is a projective right Λ -module, (P_2) gl dim $g \Lambda g < \infty$, where $g = \sum_{i \neq l} f_i$.

We conjecture that if Λ is a tiled R-order in $M_n(K)$, then $gl \dim \Lambda < \infty$ if and only if Λ has the property P. Since every tiled R-order Λ in $M_n(K)$ is conjugate to a tiled R-order in $M_n(R)$ containing e_{ii} , $1 \le i \le n$, it is enough to prove the conjecture for the class of tiled R-orders $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$. One can show that if $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_n(R)$ is a tiled R-order and if $J(\Lambda)e_{ll}$ (resp. $e_{ll}J(\Lambda)$) is a projective left (resp. right) Λ -module, then Λe_{ll} (resp. $e_{ll}J(\Lambda)$) is a projective left (resp. right) Λ -module, where $\Lambda e_{li} = \Sigma_{i\neq l} e_{ii}$; furthermore $\Sigma_{i\neq l} = K$ or M. Hence if our conjecture is true, then from Theorem 2.5 of [7] and induction it will follow that $gl \dim \Lambda \leq n-1$. This then would show that the conjecture of R. B.

Tarsey [12] about the bound on the global dimension of orders in $M_n(K)$ is true at least for the class of tiled R-orders. We note that the "sufficiency" of our conjecture follows from Theorem 2.5 of [7]. Lastly we construct an example of a tiled R-order $\Lambda = (\mathfrak{m}^{\lambda_{ij}}) \subseteq M_5(R)$ to show that the alternatives permitted in condition (P_1) are necessary.

Let $\Lambda = (\mathfrak{m}^{\lambda ij}) \subseteq M_5(R)$, where $\lambda_{23} = \lambda_{45} = \lambda_{1j} = \lambda_{jj} = 0$ for all j, $\lambda_{31} = \lambda_{51} = \lambda_{52} = 2$ and $\lambda_{ij} = 1$ otherwise. One can easily check that Λ is a ring hence a tiled R-order and that $J(\Lambda)e_{55} \cong \Lambda e_{44}$. Hence $J(\Lambda)e_{55}$ is a projective left Λ -module. Computation shows that hd $J_1 = 1 = \operatorname{hd} J_3$, hd $J_2 = 2 = \operatorname{hd} J_5$, hd $J_4 = 3$, where $J_i = e_{ii}J(\Lambda)$. Thus, by Lemma 1.2 of [7], gl dim $\Lambda = 4$. Also, if $e = \sum_{i=1}^4 e_{ii}$, gl dim $e\Lambda e = 3$; and none of J_i is a projective right Λ -module. Hence the alternatives permitted in the condition (P_1) are necessary.

At the end we make the following remark:

Remark. One can observe that in $\S 1$ to 4, we have not made any use of commutativity of R. Hence all the proofs go through when R is a local left and right principal ideal domain.

BIBLIOGRAPHY

- 1. M. Auslander and O. Goldman, *Maximal orders*, Trans. Amer. Math. Soc. 97 (1960), 1-24. MR 22 #8034.
- 2. N. Bourbaki, Eléments de mathématique. Part. 1. Fasc. VI. Livre II: Algèbre. Chap. 2: Algèbre linéaire, 3ième éd., Actualités Sci. Indust., no. 1236, Hermann, Paris, 1962. MR 27 #5765.
- 3. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519.
- 4. K. L. Fields, Examples of orders over discrete valuation rings, Math. Z. 111 (1969), 126-130. MR 40 #182.
- 5. Vasanti A. Jategaonkar, Global dimension of triangular orders over a discrete valuation ring, Proc. Amer. Math. Soc. 38 (1973), 8-14.
- 6. ———, Global dimension of tiled orders over a DVR, Notices Amer. Math. Soc. 19 (1972), A-299. Abstract #72T-A66.
- 7. ———, Global dimension of tiled orders over commutative noetherian domains, Trans. Amer. Math. Soc. 190 (1974), 357-374.
- 8. Irving Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, Ill., 1969. MR 42 #4345.
- 9. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966. MR 34 #5857.
- Bruno J. Mueller, On semiperfect rings, Illinois J. Math. 14 (1970), 464-467.
 MR 41 #6909.
 - 11. R. B. Tarsey, Orders, Thesis, The University of Chicago, Chicago, Ill. 1969.
- 12. ———, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335—340. MR 42 #3125.